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Statistical Machine Learning and Dissolved
Gas Analysis: A Review
Piotr Mirowski, Member, IEEE, and Yann LeCun

Abstract—Dissolved gas analysis (DGA) of the insulation oil
of power transformers is an investigative tool to monitor their
health and to detect impending failures by recognizing anomalous
patterns of DGA concentrations. We handle the failure prediction
problem as a simple data-mining task on DGA samples, optionally
exploiting the transformer’s age, nominal power and voltage,
and consider two approaches: 1) binary classification and 2)
regression of the time to failure. We propose a simple logarithmic
transform to preprocess DGA data in order to deal with long-tail
distributions of concentrations. We have reviewed and evaluated
15 standard statistical machine-learning algorithms on that task,
and reported quantitative results on a small but published set
of power transformers and on proprietary data from thousands
of network transformers of a utility company. Our results con-
firm that nonlinear decision functions, such as neural networks,
support vector machines with Gaussian kernels, or local linear
regression can theoretically provide slightly better performance
than linear classifiers or regressors. Software and part of the data
are available at http://www.mirowski.info/pub/dga.

Index Terms—Artificial intelligence, neural networks, power
transformer insulation, prediction methods, statistics, trans-
formers.

I. INTRODUCTION

D ISSOLVED GAS analysis (DGA) has been used for
more than 30 years [1]–[3] for the condition assessment

of functioning electrical transformers. DGA measures the con-
centrations of hydrogen , methane , ethane ,
ethylene , acetylene , carbon monoxide , and
carbon dioxide dissolved in transformer oil. and
are generally associated with the decomposition of cellulosic
insulation; usually, small amounts of and would be
expected as well. , and larger amounts of
and are generally associated with the decomposition of oil.
All transformers generate some gas during normal operation,
but it has become generally accepted that gas generation, above
and beyond that observed in normally operating transformers,
is due to faults that lead to local overheating or to points of
excessive electrical stress that result in discharges or arcing.
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A. About the Difficulty of Interpreting DGA Measurements

Despite the fact that DGA has been used for several decades
and is a common diagnostic technique for transformers, there
are no universally accepted means for interpreting DGA re-
sults. IEEE C57-104 [3] and IEC 60599 [4] use threshold values
for gas levels. Other methods make use of ratios of gas con-
centrations [2], [5] and are based on observations that relative
gas amounts show some correlation with the type, location, and
severity of the fault. Gas ratio methods allow for some level of
problem diagnosis whereas threshold methods focus more on
discriminating between normal and abnormal behavior.
The amount of any gas produced in a transformer is expected

to be influenced by age, loading, and thermal history, the pres-
ence of one or more faults, the duration of any faults, and ex-
ternal factors such as voltage surges. The complex relationship
between these is, in large part, the reason why there are no uni-
versally acceptablemeans for interpretingDGA results. It is also
worth pointing out that the bulk of the work, to date, on DGA
has been done on large power transformers. It is not at all clear
how gas thresholds, or even gas ratios, would apply to much
smaller transformers, such as network transformers, which con-
tain less oil to dilute the gas.

B. Supervised Classification of DGA-Based Features

Due to the complex interplay between various factors that
lead to gas generation, numerous data-centric machine-learning
techniques have been introduced for the prediction of trans-
former failures from DGA data [6]–[17]. These methods rely
on DGA samples that are labelled as being taken either on a
“healthy” or on a “faulty” (alternatively, failure-prone) trans-
former. As we will review them in Section II, we will see that
it is not obvious, from their description, how each algorithm
contributed to good classification performance, and why one
should be specifically chosen over any other. Neither are we
aware of comprehensive comparative studies that would bench-
mark those techniques on a common dataset.
In a departure from previous work, we propose not adding a

novel algorithm to the library, but instead review in Section IV
common, well-known statistical learning tools that are readily
available to electrical engineers. An extensive computational
evaluation of all those techniques is conducted on two different
datasets, one (small) public dataset of large-size power trans-
formers (Section V-B), and one large proprietary dataset of
thousands of network transformers (Section V-C).
In addition, the novel contributions of our work lie in the use

of a logarithmic transform to handle long-tail distributions of
DGA concentrations (Section III-B) in approaching the problem
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by regressing the time to failure, and in considering semi-super-
vised learning approaches (Section IV-C).
All of the techniques previously introduced as well as those

presented in this paper have the following steps in common: 1)
the constitution of a dataset of DGA samples (Section III-A) and
2) the extraction of mathematical features from DGA data (Sec-
tion III-B), followed by 3) the construction of a classification
tool that is trained in a supervised way on the labelled features
(Section IV).

II. REVIEW OF THE RELATED WORK

A. Collection of AI Techniques Employed

Here, we briefly review previous techniques for transformer
failure prediction from DGA. All of them follow the method-
ology enunciated in Section I-B, consisting of feature extraction
from DGA, followed by a classification algorithm.
The majority of them are techniques [6], [7], [9]–[13], [15],

[16] built around a feedforward neural-network classifier, that
is also called multilayer perceptron (MLP) and that we explain
in Section IV. Some of these papers introduce further enhance-
ments to the MLP: in particular, neural networks that are run
in parallel to an expert system in [10]; wavelet networks (i.e.,
neural nets with a wavelet-based feature extraction) in [16];
self-organizing polynomial networks in [9] and fuzzy networks
in [6], [12], [13], and [15].
Several studies [6], [8], [12], [13], [15], [16] resort to fuzzy

logic [18] when modeling the decision functions. Fuzzy logic
enables logical reasoning with continuously valued predicates
(between 0 and 1) instead of binary ones, but this inclusion of
uncertainty within the decision function is redundant with the
probability theory behind Bayesian reasoning and statistics.
Stochastic optimization techniques, such as genetic program-

ming, are also used as an additional tool to select features for the
classifier in [8], [12], [14], [16], and [17].
Finally, Shintemirov et al. [17] conduct a comprehensive

comparison between -nearest neighbors, neural networks, and
support vector machines (three techniques that we explain in
Section IV), each of them combined with genetic program-
ming-based feature selection.

B. Limitations of Previous Methods

1) Insufficient Test Data: Some earlier methods that we
reviewed would use a test dataset as small as a few transformers
only, on which no statistically significant statistics could be
drawn. For instance, [6] evaluate their method on a test set of
three transformers, and [7] on 10 transformers. Later publica-
tions were based on larger test sets of tens or hundreds of DGA
samples; however, only [12] and [17] employed cross-vali-
dation on test data to ensure that their high performance was
stable for different splits of train/test data.
2) No Comparative Evaluation With the State of the Art:

Most of the studies conducted in the aforementioned articles
[8]–[10], [12]–[14] compare their algorithms to standard mul-
tilayer neural networks. But only [17] compares itself to two
additional techniques—support vector machines (SVMs) and
-nearest neighbors, and solely [13] and [15] make numerical
comparisons to previous DGA predictive techniques.

3) About the Complexity of Hybrid Techniques: Much of
the previous work introduces techniques that are a combina-
tion of two different learning algorithms. For instance [17] uses
genetic-programming (GP) optimization on top of neural net-
works or SVM, while [16] uses GP in combination with wavelet
networks; similarly, [15] builds a self-organizing map followed
by a neural-fuzzy model. And yet, the DGA datasets generally
consist of a few hundred samples of a few (typically seven)
noisy gas measurements. Employing complex and highly para-
metric models on small training sets increases the risk of over-
fitting the training data and thereby of worse “generalization”
performance on the out-of-sample test set. This empirical ob-
servation has been formalized in terms of minimizing the struc-
tural (i.e., model-specific) risk [19], and is often referred to as
the Occam’s razor principle.1 The additional burden of hybrid
learning methods is that one needs to test for the individual con-
tributions of each learning module.
4) Lack of Publicly Available Data: To our knowledge, only

[1] provides a dataset of labeled DGA samples and only [15]
evaluates their technique on that public dataset. Combined with
the complexity of the learning algorithms, the research work
documented in other publications becomes more difficult to
reproduce.
Capitalizing upon the lessons learned from analyzing the

state-of-the-art transformer failure prediction methods, we
propose in our paper to evaluate our method on two different
datasets (one of them being publicly available), using large test
sets as much as possible and establishing comparisons among
15 well-known, simple, and representative statistical learning
algorithms described in Section IV.

III. DGA DATA

Although DGA measurements of transformer oil provide
concentrations of numerous gases, such as nitrogen , we
restrict ourselves to key gases suggested in [3] (i.e., to hy-
drogen , methane , ethane , ethylene ,
acetylene , carbon monoxide , and carbon dioxide

.

A. (Un)Balanced Transformer Datasets

Transformer failures are, by definition, rare events. Therefore
and similar to other anomaly detection problems, transformer
failure prediction suffers from the lack of data points acquired
during (or preceding) failures, relative to the number of data
points acquired in normal operating mode. This data imbalance
may impede some statistical learning algorithms: for example,
if only 5% of the data points in the dataset correspond to faulty
transformers, a trivial classifier could obtain an accuracy of 95%
simply by ignoring its inputs and by classifying all data points
as normal.
Two strategies are proposed in this paper to balance the

faulty and normal data. The first one consists in data resam-
pling for one of the two classes, and may consist in generating
new data points for the smaller class: for instance, during
experiments on the public Duval dataset, the ranges of DGA
measures for normally operating transformers were known, and

1The Occam’s razor principle could be paraphrased as “all things being con-
sidered equal, the simplest explanation is to be preferred.”
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Fig. 1. Histogram of log-concentration of methane among samples taken
from faulty (black) and normal operating (gray) network transformers (utility
data from Section V-C).

we randomly generated new data points within those ranges
(see Section V-B). The second strategy consists in selecting a
subset of existing data, as we did, for instance, on our second
series of experiments (in Section V-C).

B. Preprocessing DGA Data

1) Logarithmic Transform of DGA Concentrations: Dis-
solved gas concentrations typically present highly skewed
distributions, where the majority of the transformers have low
concentrations of a few ppm (parts per million), but where
faulty transformers can often attain thousands or tens of thou-
sands of ppm [1]–[3]. This fat-tail distribution is, at the same
time, difficult to visualize, and the extreme values can be a
source of numerical imprecisions and overflows in a statistical
learning algorithm.
For this reason, we assert that the most informative feature

of DGA data are the order of magnitude of the DGA concentra-
tions, rather than their absolute values. A natural way to account
for these changes of magnitude is to rescale DGA data using the
logarithmic transform. For ease of interpretation, we used the

. We assumed that the DGA measuring device might not
discriminate between an absence of gas (0 ppm) and a negligible
quantity (say 1 ppm), and for this reason, we lower-thresholded
all of the concentrations at 1 (conveniently, this also prevented
us from dealing with negative log feature values). We illustrate
in Fig. 1 how the log-transform can ease the visualization of key
gas distributions and even highlight the log-normal distribution
of some gases.
2) Relationship to Key Gas Ratios: Conventional

methods of DGA interpretation rely on gas ratios [1]–[3].
We notice that log-transforming the DGA concentra-
tions enables to express the ratios as subtractions, e.g.,

. Because
most of the parametric algorithms explained in the next sec-
tion perform at some point linear combinations between their
inputs (which are log-transformed concentrations), they may
learn to evaluate ratio-like relationships between the raw gas
concentrations.
3) Standardizing the DGA Data for Learning Algorithms: In

order to keep the numerical operations stable, the values taken
by the input features should be close to zero and have a small
range of the order of a few units. This requirement stems from
the statistical learning algorithms described in the next section,
some of whom rely on the assumption that the input data are nor-
mally distributed, with a zeromean and unit diagonal covariance
matrix. For some other algorithms, such as neural networks, a

considerable speedup in the convergence can be obtained when
the mean value of each input variable is close to zero, and the
covariance matrix is diagonal and unitary [20]. Therefore and
although we will not decorrelate the DGA measurements, we
propose at least to standardize all of the features to zero mean
and unit variance over the entire dataset. Data standardization
simply consists here, for each gas variable , in subtracting its
mean value over all examples and then dividing the result
by the standard deviation of the variable, to obtain

. The result of a logarithmic transfor-
mation of DGA values, followed by their standardization, is ex-
emplified on Fig. 2, where we plot 167 datapoints (marked as
crosses and circles) from a DGA dataset in a 2-D space
versus ). The ranges of the log-transformed and standard-
ized DGA values on Fig. 2 go from about 2.5 to 2.5 for both
gases, with mean values at 0.

C. Additional Features

1) Total Gas: In addition to the concentrations of in-
dividual gases, it might be useful to know the total con-
centration of inflammable carbon-containing gases, that is

. As with the other
concentrations, we suggest taking the of that sum. We
immediately see that including this total gas concentration
as a feature enables us to express Duval Triangle-like ratios
[1], [2], e.g., %

.
2) Transformer-Specific Features: The age of the trans-

former (in years), its nominal power (in kilovolt amperes), and
its voltage (in volts) are three potential causes for the large
variability among transformers’ gas production, and could
be taken into account for the failure classification task. Since
these features are positive and may have a large scale, we also
propose normalizing them by taking their .

D. Summary: Inputs to the Classifier

At this point, let us note a vector containing the input fea-
tures associated with a specific DGAmeasurement . These fea-
tures consist of seven gas concentrations, optionally enriched
by such features as total gas, the transformer’s age, its nominal
power, and voltage. We propose to -normalize and to stan-
dardize all of the features. The next section explains how we
find the “label” , and most important, how we build a classi-
fier that predicts from .

IV. METHODS FOR CLASSIFYING DGA MEASUREMENTS

This section focuses on our statistical machine-learning
methodology for transformer failure prediction. We begin by
formulating the problem from two possible viewpoints: classi-
fication or regression (Section IV-A). Then, we recapitulate the
most important concepts of predictive learning in Section IV-B
before enumerating selected classification and regression algo-
rithms, as well as their semi-supervised version that can exploit
unlabeled DGA data points, in Section IV-C. These algorithms
are described in more depth in the online Appendix to this
paper and are implemented as Matlab code libraries: both are
available at http://www.mirowski.info/pub/dga.
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Fig. 2. Comparison of six regression or classification techniques on a simplified 2-D version of the Duval dataset consisting of log-transformed and standardized
values of DGAmeasures for and . There are 167 datapoints: 117 “faulty” DGAmeasures (marked as red or magenta crosses) and 50 “normal” ones (blue
or cyan circles). Since the training datapoints are not easily separable in 2-D, the accuracy and area under the curve (see paper) on the training set are generally
not 100%. The test data points consist in the entire DGA values space. The output of the six decision functions goes from white ( , meaning “no impending
failure predicted”) to black ( 0, meaning “failure is deemed imminent”); for most classification algorithms, we plot the continuously valued probability of
having 1 instead of the actual binary decision ( 0 or 1). The decision boundary (at 0.5) is marked in green. Note that we do not know the actual
labels for the test data—this figure provides instead with an intuition of how the classification and regression algorithms operate. -Nearest Neighbors (KNN, top
left) partitions the space in a binary way, according to the Euclidian distances to the training datapoints. Weighted kernel regression (WKR, bottom middle) is
a smoothed version of KNN, and local linear regression (LLR, top middle) performs linear regression on small neighborhoods, with overall nonlinear behavior.
Neural networks (bottom left) cut the space into multiple regions. Support vector machines (SVMs, right) use only a subset of the datapoints (so-called support
vectors, in cyan and magenta) to define the decision boundary. Linear kernel SVMs (top right) behave like logistic regression and perform linear classification,
while Gaussian kernel SVMs (bottom right) behave like WKR.

A. Classification or Regression Problem

1) Formulation as a Binary Classification Problem: Al-
though DGA can diagnose multiple reasons for transformer
failures [1]–[3] (e.g., high-energy arcing, hot spots above 400
, or corona discharges), the primordial task can be expressed

as binary classification: “is the transformer at risk of failure?”
From a dataset of DGA measures collected on the pool of
transformers, one can identify DGA readings recorded shortly
before failures, and separate them from historical DGA read-
ings from transformers that kept on operating for an extended
period of time. We use the convention that measurement is
labeled in the “faulty” case and in the “normal”
case. In the experiments described in this paper, we arbitrarily
labeled DGA measurement as “normal” if it was taken at
least five years prior to a failure, and “faulty” otherwise.
2) Classifying Measurements Instead of Transformers: As

a transformer ages, its risk of failure should increase and the
DGA measurements are expected to evolve. Our predictive
task therefore shifts from “transformer classification” to “DGA

measurement classification”, and we associate to each mea-
surement taken at time , a label that characterizes the
short-term or middle-term risk of failure relative to time . In
the experiments described in this paper, some transformers
had more than a single DGA measurement taken across their
lifetime (e.g., ), but we considered the datapoints

separately.
3) Formulation as a Regression Problem: The second

dataset investigated in this paper also contained the time
stamps of DGA measurements, along with information about
the time of failure. We used this information to obtain more
informative labels , where 0 would mean
“bound to fail,” would mean “should not fail in the
foreseeable future,” and values between those two extremes
would quantify the risk of failure. A predictor trained on such
a dataset could have a real-valued output that would help
prioritize the intervention by the utility company.2

2Note that many classification algorithms, although trained on binary classes,
can be provided with probabilities.
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4) Labeled Data for the Regression Problem: We obtained
the labels for the regression task in the following way. First, we
gathered for each DGAmeasurement, both the date at which the
DGA measurement was taken, and the date at which the cor-
responding transformer failed, and computed the difference in
time, expressed in years. Transformers that had their DGA sam-
ples done at the time of or after the failure were given a value of
zero, while transformers that did not fail were associated with
an arbitrary high value. These values corresponded to the time
to failure (TTF) in years. Then, we considered only the DGA
samples from transformers that (ultimately) failed, and sorted
the TTF in order to compute their empirical cumulated distribu-
tion function (CDF). TTFs of zero would correspond to a CDF
of zero, while very long TTFs would asymptotically converge
to a CDF of one. The CDF can be simply implemented by using
a sorting algorithm; on a finite set of TTF values, the CDF value
itself corresponds to the rank of the sorted value, divided by the
number of elements. Our proposed approach to obtain labels for
the regression task of the TTF is to employ the values of the
CDF as the labels. Under that scheme, all “normal” DGA sam-
ples from transformers that did not fail (yet) are simply labeled
as “1.”

B. Commonalities of the Learning Algorithms

1) Supervised Learning of the Predictor: Supervised
learning consists in fitting a predictive model to a training
dataset (which consists here in pairs of DGA
measurements and associated risk-of-failure labels ). The
objective is merely to optimize a “black-box” function so that
for each data point , the prediction is as close as
possible to the ground truth target .
2) Training, Validation, and Test Sets: Good statistical

machine-learning algorithms are capable of extrapolating
knowledge and of generalizing it on unseen data points.
For this reason, we separate the known data points into a
training (in-sample) set, used to define model , and a test
(out-of-sample) set, used exclusively to quantify the predictive
power of .
3) Selection of Hyper-Parameters by Cross-Validation:

Most models, including the nonparametric ones, need the spec-
ification of a few hyperparameters (e.g., the number of nearest
neighbors, or the number of hidden units in a neural network);
to this effect, a subset of the training data (called the validation
set) can be set apart during learning, in order to evaluate the
quality of fit of the model for various values of the hyper-
parameters. In our research, we resorted to cross-validation
(i.e., multiple (here 5-fold) validation on five nonoverlapping
sets). More specifically, for each choice of hyperparameters,
we performed five cross-validations on five sets that contained
each 20% of the available training data, while the remaining
80% would be used to fit the model.

C. Machine-Learning Algorithms

1) Classification Techniques: We considered -Nearest
Neighbors ( -NN) [21], C-45 Decision Trees [22], neural net-
works with one hidden layer [23] and trained by stochastic
gradient descent [20], [24], as well as support vector machines

[25] with three different types of kernels: linear, polynomial,
and Gaussian.
Some algorithms strive at defining boundaries that would cut

the input space ofmultivariate DGAmeasurements into “faulty”
or “normal” ones. It is the case of decision trees, neural net-
works, and linear classifiers, such as an SVM with linear or
polynomial kernel, which can all be likened to the tables of limit
concentrations used in [3] to quantify whether a transformer has
dissolved gas-in-oil concentrations below safe limits. Instead of
predetermined key gas concentrations or concentration ratios,
all of these rules are, however, automatically learned from the
supplied training data.
The intuition for using -NN and SVM with Gaussian ker-

nels, can be described as “reasoning by analogy”: to assess the
risk of a given DGA measurement, we compare it to the most
similar DGA samples in the database.
2) Regression of the Time to Failure: The algorithms that

we considered were essentially the regression counterpart to
the classification algorithms: Linear regression and regularized
LASSO regression [26] (with linear dependencies between the
log-concentrations of gases and the risk of failure), weighted
kernel regression [27] (a continuously valued equivalent of
-NN), local linear regression (LLR) [28], neural network
regression, and support vector regression (SVR) [29] with
linear, polynomial, and Gaussian kernels.
3) Semi-Supervised Algorithms: In the presence of large

amounts of unlabeled data (as was the case for the utility
company’s dataset explained in this paper), it can be helpful to
include them along the labeled data when training the predictor.
The intuition behind semisupervised learning (SSL) is that the
learner could get better prepared for the test set “exam” if it
knew the distribution of the test data points (aka “questions”).
Note that the test set labels (aka “answers”) would still not be
supplied at training time.
We tested two SSL algorithms that obtained state-of-the-art

results on various real-world datasets: low-dimensional scaling
(LDS) [30], [31] (for classification) and local linear semi-su-
pervised regression (LLSSR) [32]. Their common point is that
they try to place the decision boundary between “faulty” and
“normal” DGA samples in regions of the DGA space where
there are few (unlabeled, test) DGA samples. This follows the
intuition that the decision between a “normal” and “faulty”
transformer should not change drastically with small DGA
value changes.
4) Illustration on a 2-D Toy Dataset: We illustrate in Fig. 2

how a few classification and regression techniques behave on
2-D data. We trained six different classifiers or regressors on
a 2-D, two-gas training set of real DGA data (that we ex-
tracted from the seven-gas Duval public dataset, and we plot
on Fig. 2 failure prediction results of each algorithm on the
entire two-gas DGA subspace. Some algorithms have a linear
decision boundary at 0.5, while other ones are nonlinear,
some smoother than others. For each of the six algorithms, we
also report the accuracy on the training set . Not all algo-
rithms fit the training data perfectly; as can be seen on these
plots, some algorithms obtain very high accuracy on the training
set (e.g., 100% for -NN), whereas their behavior on the entire



1796 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 27, NO. 4, OCTOBER 2012

two-gas DGA space is incorrect; for instance, very low concen-
trations of both DGA gases, here standardized and

with values below 1.5, are classified as “faulty”
(in black) by -NN. The explanation is very simple: real DGA
data are very noisy and two DGA gases (namely, and
in this example) are not enough to discriminate well between
“faulty” and “normal” transformers. For this reason, we see on
Fig. 2 “faulty” datapoints (red crosses) that have very low con-
centrations of and , lower than “normal” datapoints
(blue circles): those faulty datapoints may have other gases at
much higher concentrations, and we most likely need to con-
sider all seven DGA gases (and perhaps additional information
about the transformer) to discriminate well. This figure should
also serve as a cautionary tale about the risk of a statistical
learning algorithm that overfits the training data but that gen-
eralizes poorly on additional test data.

V. RESULTS AND DISCUSSION

We compared the classification and regression algorithms on
two distinct datasets. One dataset was small but publicly avail-
able (see Section V-B), while the second one was large, had
time-stamped data, but was proprietary (see Section V-C).

A. Evaluation Metrics

Three different metrics were considered: accuracy,
correlation, and area under the receiver operating character-
istic (ROC) curve; each metric had different advantages and
limitations.
1) Accuracy (Acc): Let us assume that we have a collection

of binary (0- or 1-valued) target labels , as well as
corresponding predictions . When is not binary
but real-valued, we make them binary by thresholding. Then,
the accuracy of a classifier is simply the percentage of correct
predictions over the total number of predictions: 50% means
random and 100% is perfect.
2) Correlation: For regression tasks, that is, when the tar-

gets (signal) and predictions are real-valued (e.g., between 0
and 1), the correlation (equal to

) quantifies how “aligned” the predictions are with the
targets. When the magnitude of the errors is compa-
rable to the standard deviation of the signal, then 0.
1 means perfect predictions. Note that we can still apply this
metric when the target is binary.
3) Area Under the ROC Curve: In a binary classifier, the

ultimate decision (0 or 1) is often the function of a threshold
where one can vary the value of to obtain more or fewer
“positives” (alarms) or, inversely, “negatives” .
Other binary classifiers, such as SVM or logistic regression, can
predict the probability which is then thresholded
for the binary choice. Similarly, one can threshold the output of
a regressor’s prediction .
The ROC [33] is a graphical plot of the true positive rate

(TPR) as a function of the false positive rate (FPR) as the crite-
rion of the binary classification (the aforementioned threshold)
changes. In the case of DGA-based transformer failure predic-
tion, the true positive rate is the number of data samples pre-
dicted as “faulty” and that were indeed faulty, over the total

number of faulty transformers, while the false positive rate is
the number of false alarms over the total number of “normal”
transformers. The area under the curve (AUC) of the ROC can
be approximately measured by numerical integration. A random
predictor (e.g., an unbiased coin toss) has , and
we have 0.5, while a perfect predictor first finds all of
the true positives (e.g., the TPR climbs to 1) before making any
false alarms and, thus, 1.
Because of the technicalities involved in maintaining a pool

of power or network transformers based on periodic DGA sam-
ples (namely because a utility company cannot suddenly replace
all of the risky transformers, but needs to prioritize these re-
placements based on transformer-specific risks), a real-valued
prediction is more advantageous than a mere binary classifi-
cation, since it introduces an order (ranking) of the most risky
transformers. The AUC, which evaluates the decision function
at different sensitivities (i.e., “thresholds”), is therefore the most
appropriate metric.

B. Public “Duval” Dataset of Power Transformers

In a first series of experiments, we compared 15 well-known
classification and regression algorithms on a small-size dataset
of power transformers [1]. These public data contain
log-transformed DGA values of seven gas concentrations (see
Section III) from 117 faulty and 50 functional transformers.
Note that because DGA samples in this dataset have no time-
stamp information, the labels are binary (i.e., 0 “faulty”
versus 1 “normal”), even for regression-based predictors.
In summary, the input data consisted of pairs

, where each was a 7-D
vector of log-transformed and standardized DGAmeasurements
from seven gases (see Section III-B).
Reference [1] also provides ranges of gas concentrations

for the normal operating mode, which we used to ran-
domly generate 67 additional “normal” data points (beyond the
167 data points from the original dataset) uniformly sampled
within that interval. This way, we obtained a new, balanced
dataset with “normal” and 117 “faulty”
DGA samples. We evaluated the 15 methods on those new
DGA data to investigate the impact of the label imbalance
on the prediction performance. For a given dataset (either

or ) and a given algorithm algo, we ran the
following learning evaluation:

Algorithm I Learn

Randomly split (80%, 20%) into train/test sets

5-fold cross-validate hyper-parameters of algo on

Train algorithm on

Test algorithm on

Obtain predictions from where

Compute Area Under ROC Curve (AUC) of given

if classification algo then Compute accuracy acc

else Compute correlation .
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TABLE I
PERFORMANCE OF THE CLASSIFICATION AND REGRESSION ALGORITHMS ON

THE DUVAL DATASET, MEASURED IN TERMS OF AVERAGE AUC

For each algorithm algo, we repeated the learning experiment
50 times and computed the mean values of as well
as for classification algorithms and for regression
algorithms. These results are summarized in Table I using the
AUC metric and for the original Duval data only (117 “faulty”
and 50 “normal” transformers) or after balancing the dataset
with 66 additional “normal” DGA data points sampled within
.
From this extensive evaluation, it appears that the top per-

forming classification algorithms on the Duval dataset are: 1)
SVM with Gaussian kernels; 2) one hidden-layer neural net-
works with logistic outputs; 3) -nearest neighbors (albeit they
do not provide probability estimates, which prevents us from
evaluating their AUC); and 4) the semi-supervised low-dimen-
sional scaling. These four nonlinear classifiers dominate linear
classifiers (here, an SVM with linear kernels) by three points of
accuracy, suggesting to both that the manifold that can separate
Duval DGA data is nonlinear, and that nonlinear methods are
more adapted. These results are unsurprising, since Gaussian
kernel SVMs and neural networks have proved their applica-
bility and superior performance in many domains.
Similarly, the top regression algorithms in terms of cor-

relation are the: 1) nonparametric LLR; 2) single hidden-layer
neural networks with linear outputs; 3) SVR with Gaussian ker-
nels; and 4) weighted kernel regression. Again, these four al-
gorithms are nonlinear. All of them exploit a notion of local
smoothness, but they express a complex decision function in
terms of DGA gas concentrations, contrary to linear or Lasso
regression.
Finally, we evaluate the impact of an increased fraction of

“normal” data points over the total number of data points. We
notice that while the correlation and the accuracy markedly
increase when we balance the data (e.g., from 90% accuracy
with unbalanced data to more than 96% accuracy with balanced
data for Gaussian SVM), with the exception of LASSO regres-
sion and SVR with quadratic kernels, the AUC does not change
as drastically: notably, the AUC of SVMwith linear or quadratic
kernels, and of most regression algorithms, does not show an
upward trend. We can find an obvious explanation for the linear
algorithms: the more points that are added to the dataset, the less
linear the decision boundary, hence the worse the performance

of linear classifiers and regressors.We nevertheless advocate for
richer (larger) datasets, and conservatively recommend sticking
to the data-mining rule of thumb of balanced datasets.

C. Large Proprietary Dataset of Network Transformers

1) Large Dataset of Network Transformers: The second
dataset on which we evaluate the algorithms was given by
an electrical power company that manages several thousand
network transformers.
To constitute our dataset, we gathered time-stamped DGA

measures and information about transformers (age, power,
voltage, see Section III-C) from two disjoint lists that we call
and . List contained 1796 DGA measures from all

transformers that failed or that were under careful monitoring,
and list contained about 30 500 DGA measures from the
operating ones. There were about 32 300 DGA measures in
total, most conducted within the past 10 years, and some
transformers had multiple DGA measures across time.
In the failed transformers list , we qualified 1167 DGA

measures from transformers that failed because of gas- or
pressure-related issues as “positives” and we discarded 629 re-
maining DGA measures from non-DGA-fault-related corroded
transformers. Then, using the difference between the date of the
DGA test and the date of failure, we computed a time to failure
(TTF) in years; we further removed 26 transformers that failed
more than five years since the last DGA test and qualified them
as “negatives.” Finally, we converted these TTF to numbers
between 0 and 1 using the cumulated distribution function
(CDF) of the TTF, with values of corresponding to
“immediate failure” and values of corresponding to
“failure in 5 or more year.”
By definition, transformers in the “normal” transformer list
were not labeled, since they did not fail. We, however, as-

sumed that DGA samples taken more than 5 years ago could be
considered as “negatives:” this represented an additional 1480
data points . The remaining 29 000 measurements
collected within the last 5 years could not be directly exploited
as labeled data.
Similar to the public Duval dataset, the input data con-

sisted in pairs , where each was an 11-D
vector of log-transformed and standardized DGA measure-
ments from seven gases, concatenated with the standard-
ized values of:

, and (see
Sections III-B and III-C), and our dataset consisted of 2647
data points, plotted on Fig. 3.
2) Comparative Analysis of 12 Predictive Algorithms: We

performed the analysis on the proprietary, utility data, similar to
the way we did on the Duval dataset, with the exception that we
did not add or remove data points.
We investigated only 12 out of the 15 algorithms previously

used, discarding -Nearest Neighbors and C-45 classification
trees (for which one cannot evaluate the AUC) as well as SVR
with quadratic kernels (because of computational cost, that was
not justified by a mediocre performance on the Duval dataset).
For each algorithm algo, we repeated the learning experi-

ment (see Algorithm 1) 25 times. We plotted
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Fig. 3. The 3-D plots of DGA samples from the utility dataset, showing log
concentrations of acetylene versus ethylene and ethane . The
color code of the data point labels goes from green/light (failure at a later date,

) to red/dark (impending failure, 0).

Fig. 4. Comparison of classification and regression techniques on the propri-
etary, utility dataset. The faulty transformer prediction problem is considered
as a retrieval problem, and the ROC is computed for each algorithm as well as
its associated AUC. The learning experiments were repeated 25 times and we
show the average ROC curves over all experiments.

the 25-run average ROC curve on held-out 20% test sets on
Fig. 4, along with the average AUC curves.
Overall, the classification algorithms performed slightly

better than the regression algorithm, despite not having access
to subtle information about the time to failure. The best (clas-
sification) algorithms were indeed SVM with Gaussian kernels

0.94), LDS 0.93) and neural networks with
logistic outputs 0.93). Linear classifiers or regressors
did almost as well as nonlinear algorithms.
On one hand, one could deplore the slightly disappointing

performance of statistical learning algorithms, compared to the
Duval results, where the best algorithms reached a very high

0.97. On the other hand, this might highlight some cru-
cial differences between the maintenance of small, numerous
network transformers and large, scarce power transformers. We
conjecture that the data set may have some imprecisions in the
labeling, or that we missed some transformer-related discrimi-
native features.
Nevertheless, we demonstrated the applicability of simple,

out-of-the-box machine-learning algorithms for DGA of net-
work transformers who can achieve promising numerical per-
formance on a large dataset. Indeed, and as visible in Fig. 4,
at 1% of the false alarm rate, between 30% and 50% of faulty
DGA samples were detected (using SVM with Gaussian ker-
nels, neural network classifiers, or LDS); for the same classi-
fiers and at 10% of false positives, 80% to 85% of faulty DGA
samples were detected. This performance still needs to be val-
idated over an extended period of time on real-life transformer
maintenance.
3) Applicability of Semi-Supervised Algorithms to DGA:

In a last, inconclusive series of experiments, we incorporated
knowledge about the distribution of the 29 000 recent DGA
measurements. Those were discarded from dataset because
they were not labeled (but they should be mostly taken from
“healthy” transformers). We relied on two semi-supervised
algorithms (see Section IV-C): 1) LDS, classification and 2)
LLSSR, where unlabeled test data were supplied at learning
time. The AUC of the semi-supervised algorithms dropped,
which can be explained by the fact that the unlabeled test set
was probably heavily biased toward “normal” transformers
whereas these algorithms are designed for balanced data sets.

VI. CONCLUSION

We addressed the problem of DGA for the failure predic-
tion of power and network transformers from a statistical ma-
chine-learning angle. Our predictive tools would take as input
log-transformed DGA measurements from a transformer and
provide, as an output, the quantification of the risk of an im-
pending failure.
To that effect, we conducted an extensive study on a small

but public set of published DGA data samples, and on a very
large set of thousands of network transformers belonging to a
utility company. We evaluated 15 straightforward algorithms,
considering linear and nonlinear algorithms for classification
and regression. Nonlinear algorithms performed better than
linear ones, hinting at a nonlinear boundary between DGA
samples from “failure-prone” and those from “normal.” It was
hard to choose between a subset of high-performing algorithms,
including support vector machines (SVM) with Gaussian ker-
nels, neural networks, and LLR, as their performances were
comparable. There seemed to be no specific advantage in trying
to regress the time to failure rather than performing a binary
classification; but there was a need to balance the dataset in
terms of “faulty” and “normal” DGA samples. Finally, as
shown through repeated experiments, a robust classifier such
as SVM with Gaussian kernel could achieve an area under the
ROC curve of AUC 0.97 on the Duval dataset, and of AUC
0.94 on the utility dataset, making this DGA-based tool

applicable to prioritizing repairs and replacements of network
transformers. We have made our Matlab code and part of the
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dataset available at http://www.mirowski.info/pub/dga in order
to ensure reproducibility and to help advance the field.
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